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ABSTRACT 

It is proved that any pseudovariety of finite semigroups generated by 
inverse semigroups, the subgroups of which lie in some proper pseudova- 
riety of groups, does not contain all aperiodic semigroups with commuting 
idempotents. In contrast we show that every finite semigroup with com- 
muting idempotents divides a semigroup of partial bijections that shares 
the same subgroups. Finally, we answer in the negative a question of 
Almeida as to whether a result of Stiffler characterizing the semidirect 
product of the pseudovarieties of T~-trivial semigroups and groups applies 
to any proper pseudovariety of groups. 

1. I n t r o d u c t i o n  

A m o n g  the  mos t  i m p o r t a n t  and  intensively s tud ied  classes of semigroups  are  

finite semigroups ,  regula r  semigroups  and  inverse semigroups .  F in i t e  semigroups  

arise as syn tac t i c  semigroups  of regular  languages  and  as t r ans i t i on  semigroups  of 

finite a u t o m a t a .  Th is  connec t ion  has lead to  a large and  deep l i t e r a tu re  on clas- 

s ifying regu la r  languages  by means  of a lgebra ic  p roper t i e s  of the i r  co r re spond ing  
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syntactic semigroups. The Eilenberg Variety Theorem [E] establishes a one- 

one correspondence between so-called varieties of formal languages and pseudo- 

varieties of finite semigroups. A pseudovariety is a collection of finite semigroups 

closed under homomorphic image, subsemigroups and (finite) direct product. 

The books by Eilenberg [E], Lallement [L], Pin IF] and Almeida [A1] give many 

details about this field. 

Regular semigroups, that is semigroups S such that for all s C S there is t E S 

such that s t s  = s ,  have also been intensively studied. Natural examples of regular 

semigroups include the full transformation semigroup on a set and the semigroup 

of all matrices over a field. Recently Putcha and Renner have developed a theory 

of algebraic monoids. In this theory, regular semigroups are naturally associated 

with reductive algebraic groups. Fhrthermore, they have developed a notion of 

"finite monoid of Lie type", a class of finite regular semigroups associated with 

groups of Lie type. See [Pu] or the survey article [S]. 

Regular semigroups have also been intensively studied within semigroup theory 

itself. Among the classes that have received the most treatment is the class of in- 

verse semigroups. These are precisely the regular semigroups whose idempotents 

commute---that is form a semilattice under multiplication. This property turns 

out to be equivalent to the fact that every element s in an inverse semigroup S 

has a unique inverse s -1 satisfying s s - l s  = s and s - l s 8  - 1  = 8 - 1 .  An important 

example of an inverse semigroup is the semigroup of all partial bijections on a 

set. This is called the symmetric inverse semigroup and plays the role in inverse 

semigroup theory that the symmetric group plays in group theory. The Preston- 

Wagner Theorem is the analogue of the Cayley Theorem and states that every 

inverse semigroup is faithfully represented by partial bijections. Thus inverse 

semigroups arise naturally when studying partial automorphisms of a set. They 

form an important area of study in geometry where they are called pseudogroups 

of local transformations. See the book [Pe] for background as well as the recent 

book by Lawson [La]. 

Historically, these three areas of semigroup theory have developed indepen- 

dently of one another (although for some time results from inverse semigroup 

theory have been used as models to guide the search for generalizations to regu- 

lar semigroup theory). In the early 1990's Ash [A] gave a deep connection between 

inverse semigroups and finite semigroups by proving his now famous result which 

states that any finite semigroup S, the idempotents of which commute with each 

other, is a homomorphic image of a subsemigroup T of some finite inverse semi- 

group I, in which case we say that S divides I. (The converse is of course clearly 
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also true.) This can be also be stated within the context of pseudovariety theory: 

the pseudovariety of finite semigroups generated by finite inverse semigroups is 

precisely the pseudovariety of finite semigroups whose idempotents commute. 

Previous to this, Birget [B] (or, for recent proofs, see [G] and [BM]) proved 

that any (finite) semigroup S whose principal left and right ideals form forests 

under inclusion (such semigroups are called unambiguous) embeds into a (finite) 

regular semigroup Sr~g such that S and Sr~g have the same maximal subgroups. 

In particular, since it is known that every (finite) semigroup is a homomorphic 

image of a (finite) unambiguous semigroup (via the Rhodes expansion IT]), it 

follows that every finite semigroup with trivial subgroups (called aperiodic semi- 

groups) divides a regular aperiodic semigroup. Again from the point of view 

of pseudovarieties, this says that the pseudovariety of aperiodic semigroups is 

generated by its regular members. 

The purpose of this paper is to study the question arising from the intersection 

of the classes in the theorems of Ash and Birget: does every finite aperiodic semi- 
group with commuting idempotents divide a finite aperiodic inverse semigroup? 

That is, is the pseudovariety AInv generated by finite aperiodic inverse semi- 

groups equal to the pseudovariety AIC of aperiodic semigroups with commuting 

idempoteuts? Surprisingly we show that the answer is no. We go on to show 

that a pseudovariety V generated by inverse semigroups will never contain AIC 

as long as the groups of V are compelled to lie within any proper pseudovariety 

of groups. 

In section 2 we show that the pseudovariety generated by the finite aperiodic 

inverse semigroups is strictly contained in AIC, the pseudovariety of aperiodic 
semigroups with commuting idempotents. In section 3 we generalize the method 

introduced here to prove that the smallest pseudovariety containing AIC which 

is generated by inverse semigroups is the pseudovariety IC of all finite semigroups 

with commuting idempotents. 

On the other hand, in section 4, we give a positive result by proving that every 

semigroup S in IC divides a semigroup S where S is a semigroup of partial bijec- 

tions and the maximal subgroups of S are the same as those of S. In particular, 

AIC is generated by its semigroups of partial bijections. The subtle difference 

between this result and those in sections 2 and 3 is that here the semigroups 

are not necessarily closed under inversion. In the final section we show how 

our construction can be used to settle an open question concerning semidirect 

products of T~-trivial semigroups and pseudovarieties of groups. 
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2. T h e  ape r iod ic  case 

In this section we construct a finite aperiodic semigroup S with commuting idem- 

potents and prove that  it does not divide any finite aperiodic inverse semigroup. 

Our semigroup S is to be a certain 19-element subsemigroup of/4,  the symmetric 

inverse semigroup on the set X -- {1,2,3,4}. Let B be the ideal of I4: 

B = { a E I 4 :  ]doma] _< 1}. 

We see that [BI = 42 + 1 = 17; indeed it is readily checked that B is a com- 

binatorial Brandt semigroup with 4 non-zero idempotents. We then form S by 

adjoining to B the two elements a' and b' as follows: 

a , = (  1 2 3 4 ) b , = (  1 2 3 4 ) 
3 4 - - ' 4 3 - - " 

We see at once that a '2 = b '2 = a'b' -- b'a' -- 0, so that S = B U {a',b'} is a 

19-element aperiodic subsemigroup of/4,  and so in particular S has commuting 

idempotents. We shall make use of the following fact taken from [RW]. 

LEMMA 2. I: Let r T -+ S be a surjective homomorphism of finite semigroups 

and let J'  be a `y-class of S. Then j l r  _-- J1 U J2 U . . .  U Yk is a union of 

`y-classes of T, and if Ji (1 <_ i <_ k) is <_j-minimal among J 1 , . . . ,  Jk, then 

Jir = J'. Furthermore, if  J'  is regular, then the index i is uniquely determined, 

that is Ji is <_j-minimum among J1 , . . . ,  Jk, and Ji is itself regular. 

PROPOSITION 2.2: The finite semigroup S is aperiodic with commuting idem- 

potents but does not divide any finite aperiodic inverse semigroup I. 

Proof Suppose that there existed a surjective homomorphism r T --+ S, where 

T was a subsemigroup of a finite aperiodic inverse semigroup I. 

Let J be the unique minimum (regular) .Y-class of T such that J r  = J', the 

4 x 4 `y-class of S. Let Z be the ideal of T, 0r - i .  Then from the minimality 

property of J it follows that C -- J U Z is a subsemigroup of T such that  

Cr -- B. '  Consider the Rees quotient C/Z.  Since Z is a kernel class of the 

mapping r it follows that r induces a surjective homomorphism r C / Z  -+ B. 

Hence B is a homomorphic image of the finite aperiodic Brandt semigroup C/Z; 

however, since such semigroups are congruence-free, it follows that r C / Z  ~ B 

is an isomorphism. Therefore we can conclude that J is also a 4 x 4 regular 

combinatorial .Y-class of T. 

We shall denote by ( i , j ) '  the member of B which maps i onto j ( i , j  E 

{1, 2, 3, 4}), and denote the unique inverse image in J of (i, j ) '  under r by (i, j) .  
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Choose and fix members a and b of T such that ar = a I and be = b I. We complete 

the demonstration by verifying that  the monogenic subsemigroup A = (ba -1) 
of T contains a non-trivial subgroup. In order to do this it is sufficient to show 

that  the right multiplicative action of ba -1 on the point (1, 1) of T is that  of a 

non-trivial cycle. 

We continue the proof of the proposition by analyzing the actions of a and b 

on the members of J.  Suppose that  in S, (i , j) la I = (k, l) ~. This gives 

(1) ( ( i , j )a)r  = ( i , j ) r162  = (i , j ) '  al = (k,/)' = (k,/)r 

Now ( i , j )a  ~ j  ( i , j )  and, since ( ( i , j )a)r  E J',  the minimality condition on J 

ensures that  this inequality of J-classes cannot be strict. Hence ( i , j )a  C J,  and 

since r is one-to-one on J we conclude from (1) that (i, j )a  = (k, l). Conversely, 

if (i, j )a  = (k, l) it follows from the fact that r is a homomorphism that (i, j)la' = 
(k, l)'. The same argument applies equally well to b, or to the reverse products. 

In conclusion, if we let c stand for either of a or b we have 

( i , j ) c =  (k,l) iff ( i , j) 'c '  = (k,l) '  and c(i , j)  = (k,l) iff cl(i , j)  ' =  (k,l) ' .  

That  is to say, a and b act on J as a' and b' act on J ' .  Moreover, since (j, i)' is 

inverse to ( i , j ) '  in J ' ,  it follows that  in the inverse semigroup I, ( i , j )  -1 = (j, i). 
To complete the proof it is sufficient to verify that in I, 

(1, 1)ba-1 = (1,2) and ( 1 , 2 ) b a - l = ( 1 , 1 ) .  

Now, since (1,1)'b' = (1,4)' it follows that  (1,1)b = (1,4); similarly a(4,!  ) - 

(2,1). Hence we obtain 

(1, 1)ba -1 = (1, 4)a -1 = (((1, 4)a-1)-1) -1 = (a(4, 1)) -1 = (2, 1) -1 = (1, 2). 

The following similar calculation completes the proof: 

(1,2)ba -1 = (1, 3)a -1 = (((1, 3)a-1)-1)) -1 = (a(3, 1)) -1 = (1, 1) -1 = (1, 1). 

3. T h e  gene ra l  case 

Let bl ,b2, . . .  ,bk be injective mappings on the set Xn = {1 ,2 , . . . , n} ,  and let 

U be the semigroup generated by the injections bi, (1 ~ i < k). We build 

the following subsemigroup S(U) of the symmetric inverse semigroup I2n, the 

base set of which we shall take to be X2~ = {1, 2 , . . . ,  n, 11, 21,. . . ,  W}. For a 

subset D {i l , i2, . -  it} of Xn denote by D' the set {~1,~,-- ' ,  t}. For each i 
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(1 < i < k) let b~ be the map with domb~ = domb/, and ranb~ ~ (ranb~)' which 

acts as follows: 

j .  b~ = ( j .  bi)'. 

Similarly, let a' be the map with domain Xn and range X~ for which j .  a' = j ' .  

Finally let S(U) be the semigroup generated by the mappings b~ (1 _< i _< k), 

together with a ~ and B, the combinatorial Brandt semigroup consisting of all the 

mappings of I2n of rank no more than 1. 

For example, the semigroup S of the previous section is a special case of this 

construction: there n = 2 and the elements 3 and 4 correspond to 1' and 2' 

respectively; moreover k -- 1, and the unique injection bl = b of {1,2} is the 

transposition (1 2), and so our U is a two-element group. 

As before, S(U) is the disjoint union of B, the combinatorial Brandt semigroup 

of all mappings in I2n of rank at most 1 (which has (2n)2+ 1 elements and 2n non- 

zero idempotents), and the set {b~, b~, . . . ,  b~, a'}, as this latter set generates only 

a zero semigroup, as ranges and domains are disjoint. Thus IS(U)I = 4n 2 + k + 2 

(in the previous section we saw n = 2 and k = 1 to yield our 19-element semigroup 

S). It follows that S(U) is aperiodic with commuting idempotents. We shall 

follow the argument of Proposition 2.2 to prove the main result, Theorem 3.2. 

We shall, however, require one basic fact concerning Brandt semigroups. 

LEMMA 3.1: Tile only congruence p on a Brandt semigroup S that is not con- 

tained in 7-I is the universal congruence ~. 

Proof: Suppose that p g 7-/. Certainly if (a, 0) E p with a ~ 0 then the fact that 

S is 0-simple gives immediately that p = w. On the other hand, suppose that a 

and b are not 0, and that (a, b) E p but that (a, b) r 7-/. Suppose that (a, b) r s 

Taking the unique idempotent e E E(Lb) we obtain b = bepae = 0, whence p = w 

by the previous argument. The dual argument yields the same conclusion in the 

alternative case where (a, b) • 7~. | 

THEOREM 3.2: If  S(U) is a divisor of some finite inverse semigroup I, then U 

divides I also. 

Proof." Suppose that r T -+ S(U) is a surjective homomorphism from a semi- 

group T which is a subsemigroup of some finite inverse semigroup I. Let J '  

denote the major fl-class of B and, again invoking Lemma 2.1, let J be the 

unique minimum (regular) .Z-class of T such that J r  = J ' .  We proceed as in 

the proof of Proposition 2.2 to conclude that B is a homomorphic image of C/Z ,  
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a completely 0-simple inverse semigroup, that is a Brandt semigroup over some 

group H.  That  the major J-class  J of C / Z  is also a 2n • 2n array (and not 

some strictly larger one) is a consequence of Lemma 3.1. 

We denote by (i,j) '  the member of B which maps i onto j ( i , j  �9 
{ 1 , 2 , . . . , n , l ' , 2 ' , . . . , n ' } ) .  From Lemma 3.1 it follows that ( i , j ) , r  N J is a 

single "/-/-class H(i,j) contained in J ,  and not a union of several such H-classes. 

(We shall often write Hi,j.) Hence r induces a bijection between the H-classes 

within J and those of J ' ,  which are of course singletons (i, j)~. Since r preserves 

/:- and 7~-classes it follows that J consists of 2n k-classes and 2n/:-classes re- 

spectively indexed as follows: 

Ri = Hi ,10  Hi,2 U . . .  U Hi,2n; 

L i = H I , i U H 2 , i U ' " U H 2 n #  ( l < i < 2 n ) .  

Choose and fix members a and Bi (1 < i < k) of T such that ar  = a ~ and 

Bir  = b~. Let c �9 {a, B1 ,B2 , . . . ,Bk} ,  and take B~ to stand for b~. After the 

fashion of the proof of Proposition 2.2, suppose that in S(U) we have (i,j)'c' = 
(k, l)'. Then since (k, l)' < n  ( i , j ) '  and J '  is regular it follows that ( i , j ) '~(k ,  1)', 
so that k = i. This gives 

(2) (Hi,jc)r Hi,jr162 = (i,j)'c' = (i, l)' = Hi,lr 

Again, the fact that  (Hi,jc)r �9 J~ together with the minimality condition on J 

ensures that Hi,jc C J. Now for any member x �9 Hi,y, xc <~ x, and x J x c ,  
whence it follows that  xT~xc as no two distinct 7~-classes within the regular J -  

class J are comparable. It follows from Green's Lemma that  right multiplication 

by c defines a bijection of Hi,j onto the 7-/-class Hi,jc, and since the action 

induced by r on the 7-/-classes of J~ is one-to-one, it follows that  Hi,jc = Hi,l. 
Conversely, if Hi,jc -= Hi,l, it follows from the fact that r is a homomorphism 

that (i, j ) 'd  = (i, l)'. Combining this analysis with its dual we see that c acts on 

the 7-/-classes of J as c' acts on the members of J' in that the actions are both 

defined or not defined together, and if defined they take the form 

Hi,jc--Hi,z  i f f ( i , j ) 'c ' -=(i , l ) '  and cHi , j=Hl , j  i f f c ' ( i , j ) '= ( l , j ) ' .  

Furthermore, since (j, i)' is inverse to (i,j) ~ in j r ,  it follows that in the inverse 

semigroup I,  the set of inverses of Hi j, which we write as H-~  is equal to Hi#. 

Now let b �9 (bl, b2 , . . . ,  bk}, and write B for the chosen member of b'r -1. If 
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j E dom b, then H~,jB = H(i,j)b, = Hi,(j.b),. Thus we obtain 

H i , j B a  -1 = Hi,(j.b),a -1 = (((Hi , ( j .b) ,a-1)- l )  -1 

= (aH(j.b),,i) -1 = (Hj.b,i) -1 = Hi,j.b. 

It  follows that  

(3) L j B a  -1 = Lj.b i f j  E domb and L j B a  -1 A J = 0 otherwise. 

We finish the proof by showing that  the semigroup U is a homomorphic 

image of the subsemigroup A of I generated by { B l a - l , B 2 a - 1 , . . . , B k a - 1 } .  

We claim that  the mapping whereby B a  -1 ~ b induces a homomorphism of 

A onto U. To justify this we are required to check that  if two products x = 

B~ I a - 1 Bi2 a - 1 . . .  Bip a - 1 and y = Bjl  a - 1 B j  2 a -  1 . . .  Bjq a - 1 represent equal mem- 

bers of A, then their respective images k and ~ in U are also equal. 

To this end, take any j e {1, 2 , . . . ,  n}, and suppose that  j - ~  is defined. Then 

we obtain from p-fold and q-fold use of (3) 

Lj.~ = L j x  = L j y  = Lj.fj, 

whence j �9 ~ = j �9 ~) for all j C domx;  by the same argument, j �9 ~ = j - ~ for all 

j E dom y, which yields the required conclusion ~ = ~). | 

COROLLARY 3.3: Let  V be a pseudovariety o f  semigroups generated by a 

collection of  inverse semigroups. Then  

A N I C c V ~ V = I C .  

Proof: Let U be any semigroup of one-to-one mappings on some finite set. 

Construct  the finite semigroup S(U)  as above. Since S(U)  is aperiodic with 

commuting idempotents, S(U)  E V. Since V is generated by inverse semigroups 

it also follows that  S(U)  divides some finite inverse semigroup I such that  I E V. 

Then by Theorem 3.2, U divides I as well, whence U E V. Therefore V contains 

all such semigroups U, whence, by Ash's Theorem, I C  C V; the reverse inclusion 

is certainly true. | 

COROLLARY 3.4: Let  G be a proper pseudovariety o f  groups, let V ( G )  be the 

pseudovariety  o f  all semigroups the subgroups o f  which lie in G.  Then  there 

exists a finite aperiodic semigroup with commut ing  idempotents  that  does not 

divide any inverse semigroup in V(G) .  
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Proof: Take G to be a finite group not in G. Then S(G)  E A N IC. However, 

if S(G)  divides a finite inverse semigroup I, then so does G, and so any such I 

is not a member of V(G) .  | 

Remark:  Theorem 3.2 in fact allows us to replace the pseudovariety A by a 

smaller pseudovariety and thereby gain a stronger statement than Corollary 3.3. 

The pseudovariety Y in question is contained in that generated by all ideal exten- 

sions of aperiodic Brandt semigroups by zero semigroups. Now the pseudovariety 

generated by the class of aperiodic Brandt semigroups is known to be given by 

the following identities [Tr], 

(4) Ix 2 ---- x 3, x y x  = x y x y x ,  x y x z x  = xzxyx ,  x2y 2 = y2x2]. 

The generators of V are our semigroups S(U)  which have the additional property 

that the complement of the major J-class  forms a zero subsemigroup. It follows 

from this observation together with the fact that S(U) 2 satisfies the equations 

(4), that V is contained in the pseudovariety W given by the equations x 2 = x 3 

together with 

x y z w x y  = x y z w x y z w x y ,  x y z w x y t r z w x y  = x y t r x y z w x y ,  x2y  2 = y2x2. 

Therefore we may replace A by the pseudovariety W in the statement of 

Corollary 3.3. 

4. A div is ion  t h e o r e m  

We can consider the results of the previous two sections as giving restrictions on 

the divisors of finite inverse semigroups when we restrict the class of maximal 

subgroups of such semigroups. In this section we give a positive result by proving 

that  every finite semigroup S with commuting idempotents divides a semigroup 

of partial bijections S such that  S and S share the same maximal subgroups. 

We do this by showing that  the semigroup constructed in [BMR] satisfies these 

properties. This semigroup was created to help give a more algebraic proof of 

Ash's Theorem [A] on commuting idempotents and to give some generalizations. 

Throughout,  S will denote a finite semigroup whose idempotents commute. 

One well-known and easily verified property of such a semigroup is that  the set 

Reg(S) of regular elements of S is an inverse semigroup. 

We recall the definition and most important properties of S. Let S be a 

finite semigroup with commuting idempotents. The semigroup S is defined to be 

the semigroup with generators the set S and a set of relations to be described 
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below. We need to distinguish between products of elements of S considered as 

a semigroup and elements of the free semigroup on the set S. If S l , . . . ,  sn is a 

sequence of elements of S, then w = (S l , . . . ,  sn) denotes the word of length n in 

the free semigroup on S and Sl " -  sn denotes the product of these elements in S. 

In particular, (sl --. sn) denotes the string of length one containing the element 

8 1  " " " S n .  

Now we describe the relations of S. It is the collection of all relations of the 

form ( S l , . . . , s n )  = (S l ' " s ,~)  such that n > 1 and the product sl . . .s ,~ is a 

regular element of the semigroup S. That  is, we replace a string w of elements 

of S by the string of length one equal to the product of the elements in w if and 

only if this product is a regular element of the semigroup S. We also consider 

the rewrite system [Sims] associated with this relation by orienting rules so as to 

replace strings of length greater than 1 by the string of length one. It is clear then 

that this length reducing restriction shows that the rewrite system is Noetherian. 

That  is, there are no infinite descending chains of rewrite substitutions. 

This is an infinite collection of relations, but nonetheless, the semigroup S is 

finite and has some remarkable properties as outlined in the following theorem. 

The proofs of the theorems can be found in Sections 4 and 5 of [BMR]. The idea 

for the construction and the proofs of some parts of the following were motivated 

by the work of Ash. In particular, they use Ramsey's Theorem in a non-trivial 

way. 

THEOREM 4.1: 

1. The canonical map S + -~ S factors through the canonical map S + -+ S. 

Thus there is an induced morphism f: S -4 S. 

2. The rewrite system is confluent and Noetherian. That is, every element of 

is represented by a unique word that is not reducible by the rewrite rules. 

3. For each regular element r E S, r f  -1 consists of exactly one element o r s  

whose canonical representative is the string of length one (r). 

4. S is a finite semigroup whose idempotents commute and Reg(S) is 

isomorphic to Reg(S). In particular, every maximal subgroup G of S is 

isomorphic to the maximal subgroup G f of S. 

5. S has a faithful representation by partial bijections on a finite set. 

COROLLARY 4.2: Every finite semigroup S whose idempotents commute is the 

homomorphic image of a semigroup S such that 

1. S and S have the same maximal subgroups, 

2. S is faithfully represented by partial bijections on a finite set. 
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Now let H denote a pseudovariety of finite groups and let V(H)  denote the 

pseudovariety of finite semigroups all of whose subgroups belong to H. Let 

I C H  = IC M V(H)  be the pseudovariety of all finite semigroups whose idem- 

potents commute and subgroups belong to H. In particular, if T is the trivial 

pseudovariety and G is the pseudovariety of all finite groups, then I C T  is the 

pseudovariety of all aperiodic idempotent commuting semigroups and I C G  = IC, 

the pseudovariety of all finite semigroups whose idempotents commute. The fol- 

lowing theorem follows immediately from the previous corollary. 

THEOREM 4.3: Let H be a pseudovariety of groups. Every S c I C H  is a homo- 

morphic image of a semigroup S of partial bijections that also belongs to I C H .  

In particular, I C H  is generated by its semigroups of partial bijections. 

5. A n s w e r i n g  a q u e s t i o n  o f  A l m e i d a  

Let E R  denote the pseudovariety of all finite monoids whose idempotents gen- 

erate an T~-trivial submonoid. An important theorem of Stifler shows that this 

pseudovariety decomposes as the product R * G of the pseudovariety of 7~-trivial 

monoids and the pseudovariety of finite groups. See [All, Theorem 10.10.8. 

Almeida [A1, Problem 10.10.19] asked if this decomposition can be relativized 

to some other pseudovariety H of groups. That  is, he wanted to know if the 

equation 

E R  n V ( H )  = R * H 

holds. In this section we prove that  this equation never holds for any proper 

pseudovariety of groups. Clearly the above equation is false if H is the trivial 

variety, so let us assume the H is non-trivial and proper. Let S be any semigroup 

in R * H. Thus there is an 7~-trivial semigroup T, a group G E H that acts on 

T such that  S divides the semidirect product T �9 G. By standard arguments 

[P], this induces a relational morphism T: S --~ G. This means that  graph(v) -- 

{(s, g)lg e sT} is a subsemigroup of S x G that projects onto S and that Ker(7-) = 

17 "-1 iS an 7s subsemigroup of S. The following lemma is a well known 

property of kernels onto groups. 

LEMMA 5.1: Let r E Ker(r)  and let s be any element of S such that srs = s. 

Then s E Ker(T). 

Proof: Since r E Ker(T), (r, 1) E graph(T). Let g be any element of G such 

that (s, g) E graph(T). (Such an element exists by the definition of relational 

morphism.) Then (rs, g) E graph(T). But rs is an idempotent and thus (rs, gk) E 
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graph(T) for all k > 0. In particular, there is a k such that gk __ g-1 and 

thus (rs, g -1) e graph(~'). Therefore, (s,g)(rs,  g -1) = (srs, 1) = (s, 1). Thus 

s E Ker(T). | 

COROLLARY 5.2: Let S C E R  and let 7: S --~ G be a relational morphism onto 

a group such that Ker(T) is T~-trivial. I f  r E Ker(7) is a regular element of S, 

then r = r 2. 

Proof." By Lemma 5.1, r is in fact a regular element of Ker(7). Assume that  

r is not an idempotent. Since Ker(7) is R-trivial, r cannot belong to a group 

in S. Let s be an inverse of r in Ker(7). Then since S C ER,  it follows that  

{r, rs, sr, s} is a set such that rT~rss in Ker(7). Since r is assumed not to 

be an idempotent, r is not equal to rs and this contradicts the fact that Ker(7) 

is T~-trivial. | 

THEOREM 5.3: Let H be a proper non-trivial pseudovariety of  finite groups 

and let G be a finite group not in H.  Then the aperiodic semigroup S(G) (as 

constructed in Section 3) belongs to E R  but not to R * H. 

Proof: Let G be a group that is not in H. Clearly S(G) is an aperiodic semigroup 

in ER.  Assume that the semigroup S(G) is in R �9 H. Then there is a group K 

in H and a relational morphism 7: S(G) --+ K such that Ker(7) is T~-trivial. By 

the corollary, the regular elements of Ker(7) are just the idempotents of S(G).  

Now S(G) has the structure of a unique 0-minimal ideal which is the union of 

a combinatorial Brandt semigroup and the set { a i I i=  1 , . . . ,  k}, such that the 

product of any pair is the zero of S(G). Let L be any nontrivial element of 

H and let g be a non-identity element of L. Consider the relational morphism 

71: S(G) --+ L such that (h i )T1  : g and s71 = L for all s in the 0-minimal ideal. (It 

is a relational morphism since the product of the ai are always 0.) Now none of the 

ai are in Ker(71). Consider the product relational morphism T X 71: S(G) --+ K • L 

defined by (s)(r  • 71) = ST • ST1. Then Ker(T x 71) = Ker(7) A Ker(71) is 

contained in the 0-minimal ideal. By the corollary, Ker(T x T1) consists only 

of the idempotents of S(G), which form a semilattice and thus S(G) is in the 

Malcev product of the pseudovariety Sl of all semilattices and V(H)  which is 

known to be equal to Sl * V(H) .  This is a pseudovariety generated by inverse 

semigroups whose subgroups lie in H,  contradicting Theorem 3.2. | 

The inequality represented by Theorem 5.3 can indeed be generalized to a 

wider class. Let V be a pseudovariety such that Sl C_ V _c D A  where D A  is 
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the pseudovariety of all finite monoids whose regular :/)-classes are rectangular 

bands. Let E V  then stand for the the pseudovariety of all finite monoids whose 

idempotents generate a monoid in V. It is easy to see that the Malcev product 

[P] V m H  is contained in E V  N V(H) ,  when H is any pseudovariety of groups. 

We now use the fact that V m H  is the pseudovariety of all finite semigroups S 

that  have a relational morphism ~-: S --+ G, where G E H and KerT = 1~ --1 E V. 

We first have the analogue of Corollary 5.2. 

LEMMA 5.4: Let S C EV.  Let T: S --+ G be a relational morphism onto a group 

such that Ker(~-) E V. Then every regular element r of S is an idempotent.  

Proo~ The argument is the same as that of Corollary 5.2 but in this instance 

the contradiction is furnished from rTtrsEsT~srs by noting that the assumption 

that  r ~ rs would give us a semigroup not in DA. | 

Thus we have the following generalization of Theorem 5.3. 

THEOREM 5.5: Let Sl C_ V C_ DA. Let H be a proper pseudovariety of groups 

and let G be a finite group not in H. Then S(G) lies in E V  but not in V m H .  

Remark: It is known that the equality V m G  -- E V  holds for the pseudovariety 

of all finite groups for any V such that S1 c_ V C DA.  
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